Lead optimization of 4-acetylamino-2-(3,5-dimethylpyrazol-1-yl)-6-pyridylpyrimidines as A2A adenosine receptor antagonists for the treatment of Parkinson's disease

J Med Chem. 2008 Nov 27;51(22):7099-110. doi: 10.1021/jm800851u.

Abstract

4-Acetylamino-2-(3,5-dimethylpyrazol-1-yl)-pyrimidines bearing substituted pyridyl groups as C-6 substituents were prepared as selective adenosine hA2A receptor antagonists for the treatment of Parkinson's disease. The 5-methoxy-3-pyridyl derivative 6g (hA2A Ki 2.3 nM, hA1 Ki 190 nM) was orally active at 3 mg/kg in a rat HIC model but exposure was poor in nonrodent species, presumably due to poor aqueous solubility. Follow-on compound 16a (hA2A Ki 0.83 nM, hA1 Ki 130 nM), bearing a 6-(morpholin-4-yl)-2-pyridyl substituent at C-6, had improved solubility and was orally efficacious (3 mg/kg, HIC) but showed time-dependent cytochrome P450 3A4 inhibition, possibly related to morpholine ring metabolism. Compound 16j (hA2A Ki 0.44 nM, hA1 Ki 80 nM), bearing a 6-(4-methoxypiperidin-1-yl)-2-pyridyl substituent at C-6, was sparingly soluble but had good oral exposure in rodent and nonrodent species, had no cytochrome P450 or human ether-a-go-go related gene channel issues, and was orally efficacious at 1 mg/kg in HIC and at 3 mg/kg for potentiation of l-dopa-induced contralateral rotations in 6-hydroxydopamine-lesioned rats.

MeSH terms

  • Adenosine A2 Receptor Antagonists*
  • Animals
  • Catalepsy / chemically induced
  • Catalepsy / drug therapy
  • Disease Models, Animal
  • Drug Design
  • Drug Evaluation, Preclinical
  • Haloperidol
  • Humans
  • Ligands
  • Molecular Structure
  • Parkinson Disease / drug therapy*
  • Pyrazoles / chemical synthesis
  • Pyrazoles / chemistry
  • Pyrazoles / pharmacology*
  • Pyrimidines / chemical synthesis
  • Pyrimidines / chemistry
  • Pyrimidines / pharmacology*
  • Rats
  • Stereoisomerism
  • Structure-Activity Relationship

Substances

  • Adenosine A2 Receptor Antagonists
  • Ligands
  • Pyrazoles
  • Pyrimidines
  • Haloperidol